Схема простого импульсного блока питания на tl494. Мощный стабилизатор тока и напряжения на TL494

СТАТЬЯ ПОДГОТОВЛЕНА НА ОСНОВЕ КНИГИ А. В. ГОЛОВКОВА и В. Б ЛЮБИЦКОГО "БЛОКИ ПИТАНИЯ ДЛЯ СИСТЕМНЫХ МОДУЛЕЙ ТИПА IBM PC-XT/AT" ИЗДАТЕЛЬСТВА «ЛАД и Н» Москва 1995 скачанной в электронном виде из интернета

УПРАВЛЯЮЩАЯ МИКРОСХЕМА TL494

В современных ИБП для формирования управляющего напряжения переключения мощных транзисторов преобразователя обычно используются специализированные интегральные микросхемы (ИМС).
Идеальная управляющая ИМС для обеспечения нормальной работы ИБП в режиме ШИМ должна удовлетворять большинству из перечисленных ниже условий:
рабочее напряжение не выше 40В;
наличие высокостабильного термостабилизи-рованного источника опорного напряжения;
наличие генератора пилообразного напряже-
обеспечение возможности синхронизации внешним сигналом программируемого плавного запуска;
наличие усилителя сигнала рассогласования с высоким синфазным напряжением;
наличие ШИМ-компаратора;
наличие импульсного управляемого триггера;
наличие двухканального предоконечного каскада с защитой от КЗ;
наличие логики подавления двойного импульса;
наличие средств коррекции симметрии выходных напряжений;
наличие токоограничения в широком диапазоне синфазных напряжений, а также токоограничения в каждом периоде с отключением в аварийном режиме;
наличие автоматического управления с прямой передачей;
обеспечение отключения при понижении напряжения питания;
обеспечение защиты от перенапряжений;
обеспечение совместимости с ТТЛ/КМОП логикой;
обеспечение дистанционного включения и отключения.

Рисунок 11. Управляющая микросхема TL494 и ее цоколевка.

В качестве схемы управления для рассматриваемого класса ИБП в подавляющем большинстве случаев используется микросхема типа TL494CN, выпускаемая фирмой TEXAS INSTRUMENT (США) (рис.11). Она реализует большинство из перечисленных выше функций и выпускается рядом зарубежных фирм под разными наименованиями. Например, фирма SHARP (Япония) выпускает микросхему IR3M02, фирма FAIRCHILD (США) - UA494, фирма SAMSUNG (Корея) - КА7500, фирма FUJITSU (Япония) - МВ3759 и т.д. Все эти микросхемы являются полными аналогами отечественной микросхемы КР1114ЕУ4. Рассмотрим подробно устройство и работу этой управляющей микросхемы. Она специально разработана для управления силовой частью ИБП и содержит в своем составе (рис.12):


Рисунок 12. Функциональная схема ИМС TL494

Генератор пилообразного напряжения DA6; частота ГПН определяется номиналами резистора и конденсатора, подключенных к 5-му и 6-му выводам, и в рассматриваемом классе БП выбирается равной примерно 60 кГц;
источник опорного стабилизированного напряжения DA5 (Uref=+5,OB) с внешним выходом (вывод 14);
компаратор "мертвой зоны" DA1;
компаратор ШИМ DA2;
усилитель ошибки по напряжению DA3;
усилитель ошибки по сигналу ограничения тока DA4;
два выходных транзистора VT1 и VT2 с открытыми коллекторами и эмиттерами;
динамический двухтактный D-триггер в режиме деления частоты на 2 - DD2;
вспомогательные логические элементы DD1 (2-ИЛИ), DD3 (2-Й), DD4 (2-Й), DD5 (2-ИЛИ-НЕ), DD6 (2-ИЛИ-НЕ), DD7 (НЕ);
источник постоянного напряжения с номиналом 0,1BDA7;
источник постоянного тока с номиналом 0,7мА DA8.
Схема управления будет запускаться, т.е. на 8 и 11 выводах появятся последовательности импульсов в том случае, если на вывод 12 подать любое питающее напряжение, уровень которого находится в диапазоне от +7 до +40 В. Всю совокупность функциональных узлов, входящих в состав ИМС TL494, можно условно разбить на цифровую и аналоговую часть (цифровой и аналоговый тракты прохождения сигналов). К аналоговой части относятся усилители ошибок DA3, DA4, компараторы DA1, DA2, генератор пилообразного напряжения DA6, а также вспомогательные источники DA5, DA7, DA8. Все остальные элементы, в том числе и выходные транзисторы, образуют цифровую часть (цифровой тракт).

Рисунок 13. Работа ИМС TL494 в номинальном режиме: U3, U4, U5 - напряжения на выводах 3, 4, 5.

Рассмотрим в начале работу цифрового тракта. Временные диаграммы, поясняющие работу микросхемы, приведены на рис. 13. Из временных диаграмм видно, что моменты появления выходных управляющих импульсов микросхемы, а также их длительность (диаграммы 12 и 13) определяются состоянием выхода логического элемента DD1 (диаграмма 5). Остальная "логика" выполняет лишь вспомогательную функцию разделения выходных импульсов DD1 на два канала. При этом длительность выходных импульсов микросхемы определяется длительностью открытого состояния ее выходных транзисторов VT1, VT2. Так как оба эти транзистора имеют открытые коллекторы и эмиттеры, то возможно двоякое их подключение. При включении по схеме с общим эмиттером выходные импульсы снимаются с внешних коллекторных нагрузок транзисторов (с выводов 8 и 11 микросхемы), а сами импульсы направлены выбросами вниз от положительного уровня (передние фронты импульсов отрицательны). Эмиттеры транзисторов (выводы 9 и 10 микросхемы) в этом случае, как правило, заземляются. При включении по схеме с общим коллектором внешние нагрузки подключаются к эмиттерам транзисторов и выходные импульсы, направленные в этом случае выбросами вверх (передние фронты импульсов положительны), снимаются с эмиттеров транзисторов VT1, VT2. Коллекторы этих транзисторов подключаются к шине питания управляющей микросхемы (Upom).
Выходные импульсы остальных функциональных узлов, входящих в состав цифровой части микросхемы TL494, направлены выбросами вверх, независимо от схемы включения микросхемы.
Триггер DD2 является двухтактным динамическим D-триггером. Принцип его работы заключается в следующем. По переднему (положительному) фронту выходного импульса элемента DD1 состояние входа D триггера DD2 записывается во внутренний регистр. Физически это означает, что переключается первый из двух триггеров, входя щих в состав DD2. Когда импульс на выходе элемента DD1 заканчивается, то по заднему (отрицательному) фронту этого импульса переключается второй триггер в составе DD2, и состояние выходов DD2 меняется (на выходе Q появляется информация, считанная со входа D). Это исключает возможность появления отпирающего импульса на базе каждого из транзисторов VT1, VT2 дважды в течение одного периода. Действительно, пока уровень импульса на входе С триггера DD2 не изменился, состояние его выходов не изменится. Поэтому импульс передается на выход микросхемы по одному из каналов, например верхнему (DD3, DD5, VT1). Когда импульс на входе С заканчивается, триггер DD2 переключается, запирает верхний и отпирает нижний канал (DD4, DD6, VT2). Поэтому следующий импульс, поступающий на вход С и входы DD5, DD6 будет передаваться на выход микросхемы по нижнему каналу. Таким образом каждый из выходных импульсов элемента DD1 своим отрицательным фронтом переключает триггер DD2 и этим меняет канал прохождения следующего импульса. Поэтому в справочном материале на управляющую микросхему указывается, что архитектура микросхемы обеспечивает подавление двойного импульса, т.е. исключает появление двух отпирающих импульсов на базе одного и того же транзистора за период.
Рассмотрим подробно один период работы цифрового тракта микросхемы.
Появление отпирающего импульса на базе выходного транзистора верхнего (VT1) либо нижнего (VT2) канала определяется логикой работы элементов DD5, DD6 ("2ИЛИ-НЕ") и состоянием элементов DD3, DD4 ("2-И"), которое, в свою очередь, определяется состоянием триггера DD2.
Логика работы элемента 2-ИЛИ-НЕ, как известно, заключается в том, что на выходе такого элемента появляется напряжение высокого уровня (логическая 1) в том лишь единственном случае, если на обоих его входах присутствуют низкие уровни напряжений (логические 0). При остальных возможных комбинациях входных сигналов на выходе элемента 2 ИЛИ-НЕ присутствует низкий уровень напряжения (логический 0). Поэтому если на выходе Q триггера DD2 присутствует логическая 1 (момент ti диаграммы 5 рис.13), а на выходе /Q - логический 0, то на обоих входах элемента DD3 (2И) окажутся логические 1 и, следовательно, логическая 1 появится на выходе DD3, а значит и на одном из входов элемента DD5 (2ИЛИ-НЕ) верхнего канала. Следовательно, независимо от уровня сигнала, поступающего на второй вход этого элемента с выхода элемента DD1, состоянием выхода DD5 будет логический О, и транзистор VT1 останется в закрытом состоянии. Состоянием же выхода элемента DD4 будет логический 0, т.к. логический 0 присутствует на одном из входов DD4, поступая туда с выхода /Q триггера DD2. Логический 0 с выхода элемента DD4 поступает на один из входов элемента DD6 и обеспечивает возможность прохождения импульса через нижний канал. Этот импульс положительной полярности (логическая 1) появится на выходе DD6, а значит и на базе VT2 на время паузы между выходными импульсами элемента DD1 (т.е. на время, когда на выходе DD1 присутствует логический 0 - интервал trt2 диаграммы 5 рис.13). Поэтому транзисгор VT2 открывается и на его коллекторе появляется импульс выбросом вниз от положительного уровня (в случае включения по схеме с общим эмиттером).
Начало следующего выходного импульса элемента DD1 (момент t2 диаграммы 5 рис.13) не изменит состояния элементов цифрового тракта микросхемы, за исключением элемента DD6, на выходе которого появится логический 0, и поэтому транзистор VT2 закроется. Завершение выходного импульса DD1 (момент ta) обусловит изменение состояния выходов триггера DD2 на противоположное (логический 0 - на выходе Q, логическая 1 - на выходе /Q). Поэтому поменяется состояние выходов элементов DD3, DD4 (на выходе DD3 - логический 0, на выходе DD4 - логическая 1). Начавшаяся в момент!3 пауза на выходе элемента DD1 обусловит возможность открывания транзистора VT1 верхнего канала. Логический 0 на выходе элемента DD3 "подтвердит" эту возможность, превращая ее в реальное появление отпирающего импульса на базе транзистора VT1. Этот импульс длится до момента U, после чего VT1 закрывается, и процессы повторяются.
Таким образом основная идея работы цифрового тракта микросхемы заключается в том, что длительность выходного импульса на выводах 8 и 11 (либо на выводах 9 и 10) определяется длительностью паузы между выходными импульсами элемента DD1. Элементы DD3, DD4 определяют канал прохождения импульса по сигналу низкого уровня, появление которого чередуется на выходах Q и /Q триггера DD2, управляемого тем же элементом DD1. Элементы DD5, DD6 представляют собой схемы совпадения по низкому уровню.
Для полноты описания функциональных возможностей микросхемы следует отметить еще одну важную ее особенность. Как видно из функциональной схемы рисунке входы элементов DD3, DD4 объединены и выведены на вывод 13 микросхемы. Поэтому если на вывод 13 подана логическая 1, то элементы DD3, DD4 будут работать как повторители информации с выходов Q и /Q триггера DD2. При этом элементы DD5, DD6 и транзисторы VT1, VT2 будут переключаться со сдвигом по фазе на половину периода, обеспечивая работу силовой части ИБП, построенной по двухтактной полумостовой схеме. Если на вывод 13 будет подан логический 0, то элементы DD3, DD4 будут заблокированы, т.е. состояние выходов этих элементов не будет изменяться (постоянный логический 0). Поэтому выходные импульсы элемента DD1 будут воздействовать на элементы DD5, DD6 одинаково. Элементы DD5, DD6, а значит и выходные транзисторы VT1, VT2, будут переключаться без сдвига по фазе (одновременно). Такой режим работы управляющей микросхемы используется в случае, если силовая часть ИБП выполнена по однотактной схеме. Коллекторы и эмиттеры обоих выходных транзисторов микросхемы в этом случае объединяются с целью умощнения.
В качестве "жесткой" логической единицы в двухтактных схемах используется выходное напряжение
внутреннего источника микросхемы Uref (вывод 13 микросхемы объединяется с выводом 14).
Теперь рассмотрим работу аналогового тракта микросхемы.
Состояние выхода DD1 определяется выходным сигналом компаратора ШИМ DA2 (диаграмма 4), поступающим на один из входов DD1. Выходной сигнал компаратора DA1 (диаграмма 2), поступающий на второй вход DD1, не влияет в нормальном режиме работы на состояние выхода DD1, которое определяется более широкими выходными импульсами ШИМ - компаратора DA2.
Кроме того, из диаграмм рис.13 видно, что при изменениях уровня напряжения на неинвертирующем входе ШИМ компаратора (диаграмма 3) ширина выходных импульсов микросхемы (диаграммы 12, 13) будет пропорционально изменяться. В нормальном режиме работы уровень напряжения на неинвертирующем входе компаратора ШИМ DA2 определяется только выходным напряжением усилителя ошибки DA3 (т.к. оно превышает выходное напряжение усилителя DA4), которое зависит от уровня сигнала обратной связи на его неинвертирующем входе (вывод 1 микросхемы). Поэтому при подаче сигнала обратной связи на вывод 1 микросхемы ширина выходных управляющих импульсов будет изменяться пропорционально изменению уровня этого сигнала обратной связи, который, в свою очередь, изменяется пропорционально изменениям уровня выходного напряжения ИБП, т.к. обратная связь заводится именно оттуда.
Промежутки времени между выходными импульсами на выводах 8 и 11 микросхемы, когда оба выходных транзистора VT1 и VT2 ее закрыты, называются "мертвыми зонами".
Компаратор DA1 называется компаратором "мертвой зоны", т.к. он определяет минимально возможную ее длительность. Поясним это подробнее.
Из временных диаграмм рис.13 следует, что если ширина выходных импульсов ШИМ-компа-ратора DA2 будет в силу каких-либо причин уменьшаться, то начиная с некоторой ширины этих импульсов выходные импульсы компаратора DA1 станут шире выходных импульсов ШИМ-компаратора DA2 и начнут определять состояние выхода логического элемента DD1, а значит и. ширину выходных импульсов микросхемы. Другими словами, компаратор DA1 ограничивает ширину выходных импульсов микросхемы на некотором максимальном уровне. Уровень ограничения определяется потенциалом на неинвенти-рующем входе компаратора DA1 (вывод 4 микросхемы) в установившемся режиме. Однако, с другой стороны, потенциал на выводе 4 будет определять диапазон широтной регулировки выходных импульсов микросхемы. При увеличении потенциала на выводе 4 этот диапазон сужается. Самый широкий диапазон регулировки получается тогда, когда потенциал на выводе 4 равен 0.
Однако в этом случае появляется опасность, связанная с тем, что ширина "мертвой зоны" может стать равной 0 (например, в случае значительного возрастания потребляемого от ИБП тока). Это означает, что управляющие импульсы на выводах 8 и 11 микросхемы будут следовать непосредственно друг за другом. Поэтому может возникнуть ситуация, известная под названием "пробой по стойке". Она объясняется инерционностью силовых транзисторов инвертора, которые не могут открываться и закрываться мгновенно. Поэтому, если одновременно на базу открытого до этого транзистора подать запирающий сигнал, а на базу закрытого транзистора - отпирающий (т.е. с нулевой "мертвой зоной"), то получится ситуация, когда один транзистор еще не закрылся, а другой уже открыт. Тогда и возникает пробой по транзисторной стойке полумоста, который заключается в протекании сквозного тока через оба транзистора. Ток этот, как видно из схемы рис. 5, минует первичную обмотку силового трансформатора и практически ничем не ограничен. Защита по току в этом случае не работает, т.к. ток не протекает через токовый датчик (на схеме не показан; конструкция и принцип действия применяемых токовых датчиков будут подробно рассмотрены в последующих разделах), а значит, этот датчик не может выдать сигнал на схему управления. Поэтому сквозной ток достигает очень большой величины за очень короткий промежуток времени. Это приводит к резкому возрастанию выделяющейся на обоих силовых транзисторах мощности и практически мгновенному выходу их из строя (как правило, пробой). Кроме того, броском сквозного тока могут быть выведены из строя диоды силового выпрямительного моста. Процесс этот заканчивается перегоранием сетевого предохранителя, который из-за своей инерционности не успевает защитить элементы схемы, а лишь защищает от перегрузки первичную сеть.
Поэтому управляющее напряжение; подаваемое на базы силовых транзисторов должно быть сформировано таким образом, чтобы сначала надежно закрывался бы один из этих транзисторов, а уже потом открывался бы другой. Другими словами, между управляющими импульсами, подаваемыми на базы силовых транзисторов обязательно должен быть временной сдвиг, не равный нулю ("мертвая зона"). Минимальная допустимая длительность "мертвой зоны" определяется инерционностью применяемых в качестве силовых ключей транзисторов.
Архитектура микросхемы позволяет регулировать величину минимальной длительности "мертвой зоны" с помощью потенциала на выводе 4 микросхемы. Потенциал этот задается с помощью внешнего делителя, подключаемого к шине выходного напряжения внутреннего опорного источника микросхемы Uref.
В некоторых вариантах ИБП такой делитель отсутствует. Это означает, что после завершения процесса плавного пуска (см. ниже) потенциал на выводе 4 микросхемы становится равным 0. В этих случаях минимально возможная длительность "мертвой зоны" все же не станет равной 0, а будет определяться внутренним источником напряжения DA7 (0,1В), который подключен к неинвертирующему входу компаратора DA1 своим положительным полюсом, и к выводу 4 микросхемы - отрицательным. Таким образом, благодаря включению этого источника ширина выходного импульса компаратора DA1, а значит и ширина "мертвой зоны", ни при каких условиях не может стать равной 0, а значит "пробой по стойке" будет принципиально невозможен. Другими словами, в архитектуру микросхемы заложено ограничение максимальной длительности ее выходного импульса (минимальной длительности "мертвой зоны"). Если имеется делитель, подключенный к выводу 4 микросхемы, то после плавного пуска потенциал этого вывода не равен 0, поэтому ширина выходных импульсов компаратора DA1 определяется не только внутренним источником DA7, но и остаточным (после завершения процесса плавного запуска) потенциалом на выводе 4. Однако при этом, как было сказано выше, сужается динамический диапазон широтной регулировки ШИМ компаратора DA2.

СХЕМА ПУСКА

Схема пуска предназначена для получения напряжения, которым можно было бы запитать управляющую микросхему с целью ее запуска после включения ИВП в питающую сеть. Поэтому под пуском подразумевается запуск в работу в первую очередь управляющей микросхемы, без нормального функционирования которой невозможна работа силовой части и всей схемы ИБП в целом.
Схема пуска может быть построена двумя различными способами:
с самовозбуждением;
с принудительным возбуждением.
Схема с самовозбуждением используется, например, в ИБП GT-150W (рис.14). Выпрямленное напряжение сети Uep подается на резистивный делитель R5, R3, R6, R4, являющийся базовым для обоих силовых ключевых транзисторов Q1, Q2. Поэтому через транзисторы под воздействием суммарного напряжения на конденсаторах С5, С6 (Uep) начинает протекать базовый ток по цепи (+)С5 - R5 - R7 - 6-э Q1 - R6 - R8 - 6-э Q2 - "общий провод"первичной стороны - (-)С6.
Оба транзистора приоткрываются этим током. В результате через участки кол лектор-эмиттер обоих транзисторов начинают протекать токи взаимно противоположных направлений по цепям:
через Q1: (+)С5 - шина +310 В - к-э Q1 - 5-6 Т1 -1-2 Т2-С9- (-)С5.
через Q2: (+)С6 - С9 - 2-1 Т2 - 6-5 Т1 - к-э Q2 -"общий провод"первичной стороны - (-)С6.


Рисунок 14. Схема запуска с самовозбуждением ИБП GT-150W.

Если бы оба тока, протекающие через дополнительные (пусковые) витки 5-6 Т1 в противоположных направлениях, были бы равны, то результирующий ток был бы равен 0, и схема не смогла бы запуститься.
Однако в силу технологического разброса коэффициентов усиления по току транзисторов Q1, Q2 всегда какой-либо один из этих токов больше другого, т.к. транзисторы приоткрыты в разной степени. Поэтому результирующий ток через витки 5-6 Т1 не равен 0 и имеет то или иное направление. Допустим, что преобладает ток через транзистор Q1 (то есть Q1 приоткрыт в большей степени, чем Q2) и, следовательно, ток протекает в направлении от вывода 5 к выводу 6 Т1. Дальнейшие рассуждения основываются на этом допущении.
Однако, справедливости ради нужно отметить, что преобладающим может оказаться и ток через транзистор Q2, и тогда все далее описываемые процессы будут относиться к транзистору Q2.
Протекание тока через витки 5-6 Т1 вызывает появление ЭДС взаимоиндукции на всех обмотках управляющего трансформатора Т1. При этом (+)ЭДС возникает на выводе 4 относительно вывода 5 и в базу Q1 под воздействием этой ЭДС течет дополнительно приоткрывающий его ток по цепи: 4 Т1 - D7-R9-R7-6-3 Q1 - 5 Т1.
Одновременно на выводе 7 Т1 появляется (-) ЭДС относительно вывода 8, т.е. полярность этой ЭДС оказывается запирающей для Q2 и он закрывается. Далее вступает в действие положительная обратная связь (ПОС). Действие ее заключается в том, что при возрастании тока через участок коллектор-эмиттер Q1 и витки 5-6 Т1 на обмотке 4-5 Т1 действует возрастающая ЭДС, которая, создавая дополнительный базовый ток для Q1, еще в большей степени приоткрывает его. Процесс этот развивается лавинообразно (очень быстро) и приводит к полному открыванию Q1 и запиранию Q2. Через открытый Q1 и первичную обмотку 1-2 силового импульсного трансформатора Т2 начинает протекать линейно нарастающий ток, что вызывает появление импульса ЭДС взаимоиндукции на всех обмотках Т2. Импульс с обмотки 7-5 Т2 заряжает накопительную емкость С22. На С22 появляется напряжение, которое подается в качестве питающего на вывод 12 управляющей микросхемы IC1 типа TL494 и на согласующий каскад. Микросхема запускается и генерирует на своих выводах 11, 8 прямоугольные последовательности импульсов, которыми через согласующий каскад (Q3, Q4, Т1) начинают переключаться силовые ключи Q1, Q2. На всех обмотках силового трансформатора Т2 появляются импульсные ЭДС номинального уровня. При этом ЭДС с обмоток 3-5 и 7-5 постоянно подпитывают С22, поддерживая на нем неизменный уровень напряжения (около +27В). Другими словами, микросхема по кольцу обратной связи начинает запи-тывать сама себя (самоподпитка). Блок выходит на рабочий режим. Напряжение питания микросхемы и согласующего каскада является вспомогательным, действует только внутри блока и обычно называется Upom.
Эта схема может иметь некоторые разновидности, как например в импульсном блоке питания LPS-02-150XT (производство Тайвань) для компьютера Мазовия СМ1914 (рис.15). В этой схеме начальный толчок для развития процесса запуска получается с помощью отдельного однополупериодного выпрямителя D1, С7, который запитывает в первый положительный полупериод сети базовый для силовых ключей резистивный делитель. Это ускоряет процесс запуска, т.к. первоначальное отпирание одного из ключей происходит параллельно с зарядкой сглаживающих конденсаторов большой емкости. В остальном схема работает аналогично рассмотренной выше.


Рисунок 15. Схема запуска с самовозбуждением в импульсном блоке питания LPS-02-150XT

Такая схема используется, например, в ИБП PS-200B фирмы LING YIN GROUP (Тайвань).
Первичная обмотка специального пускового трансформатора Т1 включается на половинное напряжение сети (при номинале 220В) либо на полное (при номинале 110В). Это делается из тех соображений, чтобы амплитуда переменного напряжения на вторичной обмотке Т1 не зависела бы от номинала питающей сети. Через первичную обмотку Т1 при включении ИБП в сеть протекает переменный ток. На вторичной обмотке 3-4 Т1 поэтому наводится переменная синусоидальная ЭДС с частотой питающей сети. Ток, протекающий под воздействием этой ЭДС, выпрямляется специальной мостовой схемой на диодах D3-D6 и сглаживается конденсатором С26. На С26 выделяется постоянное напряжение около 10-11В, которое подается в качестве питающего на вывод 12 управляющей микросхемы U1 типа TL494 и на согласующий каскад. Параллельно с этим процессом происходит заряд конденсаторов сглаживающего фильтра. Поэтому к моменту подачи питания на микросхему силовой каскад также оказывается запитанным. Микросхема запускается и начинает генерировать на своих выводах 8, 11 последовательности прямоугольных импульсов, которыми через согласующий каскад начинают переключаться силовые ключи. В результате появляются выходные напряжения блока. После выхода на режим самоподпитка микросхемы производится с шины выходного напряжения +12В через развязывающий диод D8. Так как это напряжение самоподпитки немного превышает выходное напряжение выпрямителя D3-D5, то диоды этого пускового выпрямителя запираются, и он в дальнейшем не влияет на работу схемы.
Необходимость обратной связи через диод D8 не является обязательной. В схемах некоторых ИБП, где применяется принудительное возбуждение, такая связь отсутствует. Управляющая микросхема и согласующий каскад в течение всего времени работы запитываются с выхода пускового выпрямителя. Однако уровень пульсации на шине Upom в этом случае получается несколько большим, чем в случае питания микросхемы с шины выходного напряжения +12В.
Подводя итог описания схем запуска, можно отметить основные особенности их построения. В схеме с самовозбуждением производится первоначальное переключение силовых транзисторов, результатом чего является появление напряжения питания микросхемы Upom. В схеме с принудительным возбуждением сначала получают Upom, а уже как результат - переключение силовых транзисторов. Кроме того, в схемах с самовозбуждением напряжение Upom обычно имеет уровень около +26В, а в схемах с принудительным возбуждением - около +12В.
Схема с принудительным возбуждением (с отдельным трансформатором) приведена на рис.16.


Рисунок 16. Схема запуска с принудительным возбуждением импульсного блока питания PS-200B (LING YIN GROUP).

СОГЛАСУЮЩИЙ КАСКАД

Для согласования и развязки мощного выходного каскада от маломощных цепей управления служит согласующий каскад.
Практические схемы построения согласующего каскада в различных ИБП можно разделить на два основных варианта:
транзисторный вариант, где в качестве ключей используются внешние транзисторы в дискретном исполнении;
бестранзисторный вариант, где в качестве ключей используются выходные транзисторы самой управляющей микросхемы VT1, VT2 (в интегральном исполнении).
Кроме того, еще одним признаком, по которому можно классифицировать согласующие каскады, является способ управления силовыми транзисторами полумостового инвертора. По этому признаку все согласующие каскады можно разделить на:
каскады с общим управлением, где управление обоими силовыми транзисторами производится с помощью одного общего для них управляющего трансформатора, который имеет одну первичную и две вторичные обмотки;
каскады с раздельным управлением, где управление каждым из силовых транзисторов производится с помощью отдельного трансформатора, т.е. в согласующем каскаде имеется два управляющих трансформатора.
Исходя из обеих классификаций согласующий каскад может быть выполнен одним из четырех способов:
транзисторный с общим управлением;
транзисторный с раздельным управлением;
бестранзисторный с общим управлением;
бестранзисторный с раздельным управлением.
Транзисторные каскады с раздельным управлением применяются редко, либо вообще не применяются. Авторам не довелось столкнуться с таким вариантом исполнения согласующего каскада. Остальные три варианта встречаются более или менее часто.
Во всех вариантах связь с силовым каскадом осуществляется трансформаторным способом.
При этом трансформатор выполняет две основные функции: усиления управляющего сигнала по току (за счет ослабления по напряжению) и гальванической развязки. Гальваническая развязка необходима потому, что управляющая микросхема и согласующий каскад находятся на вторичной стороне, а силовой каскад - на первичной стороне ИБП.
Рассмотрим работу каждого из упомянутых вариантов согласующего каскада на конкретных примерах.
В транзисторной схеме с общим управлением в качестве согласующего каскада используется двухтактный трансформаторный предварительный усилитель мощности на транзисторах Q3 и Q4 (рис.17).


Рисунок 17. Согласующий каскад импульсного блока питания KYP-150W (транзисторная схема с общим управлением).


Рисунок 18. Реальная форма импульсов на коллекторах

Токи через диоды D7 и D9, протекающие под воздействием магнитной энергии, запасенной в сердечнике DT, имеют вид спадающей экспоненты. В сердечнике DT во время протекания токов через диоды D7 и D9 действует изменяющийся (спадающий) магнитный поток, что и обуславливает появление импульсов ЭДС на его вторичных обмотках.
Диод D8 устраняет влияние согласующего каскада на управляющую микросхему через общую шину питания.
Другая разновидность транзисторного согласующего каскада с общим управлением используется в импульсном блоке питания ESAN ESP-1003R (рис.19). Первой особенностью этого варианта является то, что выходные транзисторы VT1, VT2 микросхемы включены как эмиттерные повторители. Выходные сигналы снимаются с выводов 9, 10 микросхемы. Резисторы R17, R16 и R15, R14 являются эмиттер-ными нагрузками транзисторов VT1 и VT2 соответственно. Эти же резисторы образуют базовые делители для транзисторов Q3, Q4, которые работают в ключевом режиме. Емкости С13 и С12 являются форсирующими и способствуют ускорению процессов переключения транзисторов Q3, Q4. Второй характерной особенностью этого каскада является то, что первичная обмотка управляющего трансформатора DT не имеет вывода от средней точки и подключена между коллекторами транзисторов Q3, Q4. Когда выходной транзистор VT1 управляющей микросхемы открывается, то оказывается запитан напряжением Upom базовый для транзистора Q3 делитель R17, R16. Поэтому через управляющий переход Q3 протекает ток, и он открывается. Ускорению этого процесса способствует форсирующая емкость С13, которая обеспечивает подачу в базу Q3 отпирающего тока, в 2-2,5 раза превышающего установившееся значение. Результатом открывания Q3 является то, что первичная обмотка 1-2 DT своим выводом 1 оказывается подключена к корпусу. Так как второй транзистор Q4 заперт, то через первичную обмотку DT начинает протекать нарастающий ток по цепи: Upom - R11 - 2-1 DT - к-э Q3 - корпус.


Рисунок 19. Согласующий каскад импульсного блока питания ESP-1003R ESAN ELECTRONIC CO., LTD (транзисторная схема с общим управлением).

На вторичных обмотках 3-4 и 5-6 DT появляются импульсы ЭДС прямоугольной формы. Направление намотки вторичных обмоток DT разное. Поэтому один из силовых транзисторов (на схеме не показано) получит открывающий базовый импульс, а другой - закрывающий. Когда VT1 управляющей микросхемы резко закрывается, то вслед за ним также резко закрывается и Q3. Ускорению процесса закрывания способствует форсирующая емкость С13, напряжение с которой прикладывается к переходу база-эмиттер Q3 в закрывающей полярности. Далее длится "мертвая зона", когда оба выходных транзистора микросхемы закрыты. Далее открывается выходной транзистор VT2, а значит оказывается запитанным напряжением Upom базовый для второго транзистора Q4 делитель R15, R14. Поэтому Q4 открывается и первичная обмотка 1-2 DT оказывается подключена к корпусу другим своим концом (выводом 2), поэтому через нее начинает протекать нарастающий ток противоположного предыдущему случаю направления по цепи: Upom -R10- 1-2 DT - к-э Q4 - "корпус".
Поэтому полярность импульсов на вторичных обмотках DT меняется, и открывающий импульс получит второй силовой транзистор, а на базе первого будет действовать импульс закрывающей полярности. Когда VT2 управляющей микросхемы резко закрывается, то вслед за ним также резко закрывается Q4 (с помощью форсирующей емкости С12). Далее опять длится "мертвая зона", после чего процессы повторяются.
Таким образом, основная идея, заложенная в работу этого каскада, заключается в том, что переменный магнитный поток в сердечнике DT удается получить благодаря тому, что первичная обмотка DT подключается к корпусу то одним, то другим своим концом. Поэтому через нее протекает переменный ток без постоянной составляющей при однополярном питании.
В бестранзисторных вариантах согласующих каскадов ИБП в качестве транзисторов согласующего каскада, как это было отмечено ранее, используются выходные транзисторы VT1, VT2 управляющей микросхемы. В этом случае дискретные транзисторы согласующего каскада отсутствуют.
Бестранзисторная схема с общим управлением используется, например, в схеме ИБП PS-200В. Выходные транзисторы микросхемы VT1, VT2 нагружаются по коллекторам первичными полуобмотками трансформатора DT (рис.20). Питание подается в среднюю точку первичной обмотки DT.


Рисунок 20. Согласующий каскад импульсного блока питания PS-200B (бестранзисторная схема с общим управлением).

Когда открывается транзистор VT1, то нарастающий ток протекает через этот транзистор и полуобмотку 1-2 управляющего трансформатора DT. На вторичных обмотках DT появляются управляющие импульсы, имеющие такую полярность, что один из силовых транзисторов инвертора открывается, а другой закрывается. По окончании импульса VT1 резко закрывается, ток через полуобмотку 1-2 DT перестает протекать, поэтому исчезает ЭДС на вторичных обмотках DT, что приводит к закрыванию силовых транзисторов. Далее длится "мертвая зона", когда оба выходных транзистора VT1, VT2 микросхемы закрыты, и ток через первичную обмотку DT не протекает. Далее открывается транзистор VT2, и ток, нарастая во времени, протекает через этот транзистор и полуобмотку 2-3 DT. Магнитный поток, создаваемый этим током в сердечнике DT, имеет противоположное предыдущему случаю направление. Поэтому на вторичных обмотках DT наводятся ЭДС противоположной предыдущему случаю полярности. В результате открывается второй транзистор полумостового инвертора, а на базе первого импульс имеет закрывающую его полярность. Когда VT2 управляющей микросхемы закрывается, ток через него и первичную обмотку DT прекращается. Поэтому исчезают ЭДС на вторичных обмотках DT, и силовые транзисторы инвертора вновь оказываются закрыты. Далее опять длится "мертвая зона", после чего процессы повторяются.
Основная идея построения этого каскада заключается в том, что переменный магнитный поток в сердечнике управляющего трансформатора удается получить благодаря подаче питания в среднюю точку первичной обмотки этого трансформатора. Поэтому токи протекают через полуобмотки с одинаковым числом витков в разных направлениях. Когда оба выходных транзистора микросхемы закрыты ("мертвые зоны"), магнитный поток в сердечнике DT равен 0. Поочередное открывание транзисторов вызывает поочередное появление магнитного потока то одной, то другой полуобмотки. Результирующий магнитный поток в сердечнике получается переменным.
Последняя из указанных разновидностей (бестранзисторная схема с раздельным управлением) используется, например, в ИБП компьютера Appis (Перу). В этой схеме имеется два управляющих трансформатора DT1, DT2, первичные полуобмотки которых являются коллекторными нагрузками для выходных транзисторов микросхемы (рис.21). В этой схеме управление каждым из двух силовых ключей осуществляется через отдельный трансформатор. Питание подается на коллекторы выходных транзисторов микросхемы с общей шины Upom через средние точки первичных обмоток управляющих трансформаторов DT1, DT2.
Диоды D9, D10 с соответствующими частями первичных обмоток DT1, DT2 образуют схемы размагничивания сердечников. Остановимся на этом вопросе подробнее.


Рисунок 21. Согласующий каскад импульсного блока питания "Appis" (бестранзисторная схема с раздельным управлением).

Согласующий каскад (рис.21) по сути представляет собой два независимых однотактных прямоходовых преобразователя, т.к. открывающий ток протекает в базу силового транзистора во время открытого состояния согласующего транзистора, т.е. согласующий и связанный с ним через трансформатор силовой транзистор открыты одновременно. При этом оба импульсных трансформатора DT1, DT2 работают с постоянной составляющей тока первичной обмотки, т.е. с вынужденным подмагничиванием. Если не предусмотреть специальных мер по размагничиванию сердечников, то они войдут в магнитное насыщение за несколько периодов работы преобразователя, что приведет к значительному уменьшению индуктивности первичных обмоток и выходу из строя переключающих транзисторов VT1, VT2. Рассмотрим процессы, протекающие в преобразователе на транзисторе VT1 и трансформаторе DT1. Когда транзистор VT1 открывается, через него и первичную обмотку 1-2 DT1 протекает линейно нарастающий ток по цепи: Upom -2-1 DT1 - к-э VT1 - "корпус".
Когда отпирающий импульс на базе VT1 заканчивается, он резко закрывается. Ток через обмотку 1-2 DT1 прекращается. Однако ЭДС на размагничивающей обмотке 2-3 DT1 при этом меняет полярность, и через эту обмотку и диод D10 протекает размагничивающий сердечник DT1 ток по цепи: 2 DT1 - Upom - С9- "корпус"- D10-3DT1.
Ток этот - линейно спадающий, т.е. производная магнитного потока через сердечник DT1 меняет знак, и сердечник размагничивается. Таким образом во время этого обратного такта происходит возврат избыточной энергии, запасенной в сердечнике DT1 за время открытого состояния транзистора VT1, в источник (подзаряжается накопительный конденсатор С9 шины Upom).
Однако такой вариант реализации согласующего каскада наименее предпочтителен, т.к. оба трансформатора DT1, DT2 работают с недоиспользованием по индукции и с постоянной составляющей тока первичной обмотки. Перемаг-ничивание сердечников DT1, DT2 происходит по частному циклу, охватывающему только положительные значения индукции. Магнитные потоки в сердечниках из-за этого получаются пульсирующими, т.е. содержат постоянную составляющую. Это приводит к завышенным массогабарит-ным показателям трансформаторов DT1, DT2 и, кроме того, по сравнению с другими вариантами согласующего каскада, здесь требуется два трансформатора вместо одного.

Большая часть современных импульсных блоков питания изготавливается на микросхемах типа TL494, которая является импульсным ШИМ контроллером. Силовая часть изготавливается на мощных элементах, например транзисторах.Схема включения ТЛ494 простая, дополнительных радиодеталей требуется минимум, в datasheet подробно описано.

Варианты модификаций: TL494CN, TL494CD, TL494IN, TL494C, TL494CI.

Так же написал обзоры других популярных ИМС , .


  • 1. Характеристики и функционал
  • 2. Аналоги
  • 3. Типовые схемы включения для БП на TL494
  • 4. Схемы блоков питания
  • 5. Переделка ATX БП в лабораторный
  • 6. Datasheet
  • 7. Графики электрических характеристик
  • 8. Функционал микросхемы

Характеристики и функционал

Микросхема TL494 разработана как Шим контроллер для импульсных блоков питания, с фиксированной частотой работы. За задания рабочей частоты требуется два дополнительных внешних элемента резистор и конденсатор. Микросхема имеет источник опорного напряжения на 5В, погрешность которого 5%.

Область применения, указанная производителем:

  1. блоки питания мощностью более 90W AC-DС с PFC;
  2. микроволновые печи;
  3. повышающие преобразователи с 12В на 220В;
  4. источники энергоснабжения для серверов;
  5. инверторы для солнечных батарей;
  6. электрические велосипеды и мотоциклы;
  7. понижающие преобразователи;
  8. детекторы дыма;
  9. настольный компьютеры.

Аналоги

Самыми известными аналогами микросхемы TL494 стали отечественная KA7500B, КР1114ЕУ4 от Fairchild, Sharp IR3M02, UA494, Fujitsu MB3759. Схема включения аналогичны, распиновка может быть другой.

Новая TL594 является аналогом ТЛ494 с повышенной точность компаратора. TL598 аналог ТЛ594 с повторителем на выходе.

Типовые схемы включения для БП на TL494

Основные схемы включения TL494 собраны из даташитов различных производителей. Они могут служит основой для разработки аналогичных устройств с похожим функционалом.

Схемы блоков питания

Сложные схемы импульсных блоков питания TL494 рассматривать не буду. Они требуют множества деталей и времени, поэтому изготавливать своими руками не рационально. Проще у китайцев купить готовый аналогичный модуль за 300-500руб.

..

При сборке повышающих преобразователей напряжения особое внимание уделяйте охлаждению силовых транзисторов на выходе. Для 200W на выходе будет ток около 1А, относительно не много. Тестирование на стабильность работы проводить с максимально допустимой нагрузкой. Необходимую нагрузку лучше всего сформировать из ламп накаливания на 220 вольт, мощностью 20w, 40w, 60w, 100w. Не стоит перегревать транзисторы более чем на 100 градусов. Соблюдайте правила техники безопасности при работе с высоким напряжением. Семь раз померяй, один раз включи.

Повышающий преобразователь на TL494 практически не требуют настройки, повторяемость высокая. Перед сборкой проверьте номиналы резисторов и конденсаторов. Чем меньше будет отклонение, тем стабильней будет работать инвертор с 12 на 220 вольт.

Контроль температуры транзисторов лучше производить термопарой. Если радиатор маловат, то проще поставить вентилятор, чтобы не ставить новый радиатор.

Блок питания на TL494 своими руками мне приходилось изготавливать для усилителя сабвуфера в автомобиле. В то время автомобильные инверторы с 12В на 220В не продавались, и у китайцев не было Aliexpress. В качестве усилителя УНЧ применил микросхему серии TDA на 80W.

За последние 5 лет увеличился интерес с технике с электрическим приводом. Этому поспособствовали китайцы, начавшие массовое производство электрических велосипедов, современных колесо-мотор с высоким КПД. Лучшей реализацией считаю двух колёсные и одноколесные гироскутеры.В 2015 году китайская компания Ninebot купила американской Segway и начал производства 50 видов электрических скутеров типа Сегвея.

Для управления мощным низковольтным двигателем требуется хороший контроллер управления.

Переделка ATX БП в лабораторный

У каждого есть радиолюбителя есть мощный блок питания ATX от компьютера, который выдаёт 5В и 12В. Его мощность от 200вт до 500вт. Зная параметры управляющего контроллера, можно изменить параметры ATX источника. Например повысить напряжение с 12 до 30В. Популярны 2 способа, один от итальянских радиолюбителей.

Рассмотрим итальянский способ, который максимально простой и не требует перемотки трансформаторов. Выход ATX полностью убирается и дорабатывается согласно схеме. Огромное количество радиолюбителей повторили эту схему благодаря своей простоте. Напряжение на выходе от 1В до 30В, сила тока до 10А.

Datasheet

Микросхема настолько популярна, что её выпускает несколько производителей, навскидку я нашел 5 разных даташитов, от Motorola, Texas Instruments и других менее известных. Наиболее полные datasheet TL494 у Моторолы, который и опубликую.

Все даташиты, можно каждый скачать:

  • Motorola ;
  • Texas Instruments — самый лучший даташит;
  • Contek

Рассматриваемая микросхема относится к перечню наиболее распространенных и широко применяемых интегральных электронных схем. Предшественником ее была серия UC38хх ШИМ-контроллеров компании Unitrode. В 1999 г. эта фирма была куплена компанией Texas Instruments, и с тех пор началось развитие линейки этих контроллеров, приведшее к созданию в начале 2000-х гг. микросхем серии TL494. Кроме уже отмеченных выше ИБП, их можно встретить в регуляторах постоянного напряжения, в управляемых приводах, в устройствах плавного пуска, - словом везде, где используется ШИМ-регулирование.

Среди фирм, клонировавших данную микросхему, значатся такие всемирно известные бренды, как Motorola, Inc, International Rectifier, Fairchild Semiconductor, ON Semiconductor. Все они дают подробное описание своей продукции, так называемый TL494CN datasheet.

Документация

Анализ описаний рассматриваемого типа микросхемы от разных производителей показывает практическую идентичность ее характеристик. Объем сведений, приводимых разными фирмами, практически одинаков. Более того, TL494CN datasheet от таких брендов, как Motorola, Inc и ON Semiconductor повторяют друг друга в своей структуре, приводимых рисунках, таблицах и графиках. Несколько отличается от них изложение материала у фирмы Texas Instruments, однако при внимательном его изучении становится ясно, что имеется в виду идентичное изделие.

Назначение микросхемы TL494CN

Описание ее по традиции начнем с назначения и перечня внутренних устройств. Она представляет собой ШИМ-контроллер с фиксированной частотой, предназначенный преимущественно для применения в ИБП, и содержащий следующие устройства:

  • генератор пилообразного напряжения (ГПН);
  • усилители ошибки;
  • источник эталонного (опорного) напряжения +5 В;
  • схема регулировки «мертвого времени»;
  • выходные на ток до 500 мА;
  • схема выбора одно- или двухтактного режима работы.

Предельные параметры

Как и у любой другой микросхемы, у TL494CN описание в обязательном порядке должно содержать перечень предельно допустимых эксплуатационных характеристик. Дадим их на основании данных Motorola, Inc:

  1. Напряжение питания: 42 В.
  2. Напряжение на коллекторе выходного транзистора: 42 В.
  3. Ток коллектора выходного транзистора: 500 мА.
  4. Диапазон входного напряжения усилителя: от - 0,3 В до +42 В.
  5. Рассеиваемая мощность (при t< 45 °C): 1000 мВт.
  6. Диапазон температур хранения: от -55 до +125 °С.
  7. Диапазон рабочих температур окружающей среды: от 0 до +70 °С.

Следует отметить, что параметр 7 для микросхемы TL494IN несколько шире: от -25 до +85 °С.

Конструкция микросхемы TL494CN

Описание на русском языке выводов ее корпуса приведено на рисунке, расположенном ниже.

Микросхема помещена в пластиковый (на это указывает литера N в конце ее обозначения) 16-контактный корпус с выводами pdp-типа.

Внешний вид ее показан на фото ниже.

TL494CN: схема функциональная

Итак, задачей данной микросхемы является широтно-импульсная модуляция (ШИМ, или англ. Pulse Width Modulated (PWM)) импульсов напряжения, вырабатываемых внутри как регулируемых, так и нерегулируемых ИБП. В блоках питания первого типа диапазон длительности импульсов, как правило, достигает максимально возможной величины (~ 48% для каждого выхода в двухтактных схемах, широко используемых для питания автомобильных аудиоусилителей).

Микросхема TL494CN имеет в общей сложности 6 выводов для выходных сигналов, 4 из них (1, 2, 15, 16) являются входами внутренних усилителей ошибки, используемых для защиты ИБП от токовых и потенциальных перегрузок. Контакт № 4 - это вход сигнала от 0 до 3 В для регулировки скважности выходных прямоугольных импульсов, а № 3 является выходом компаратора и может быть использован несколькими способами. Еще 4 (номера 8, 9, 10, 11) представляют собой свободные коллекторы и эмиттеры транзисторов с предельно допустимым током нагрузки 250 мА (в длительном режиме не более 200 мА). Они могут соединяться попарно (9 с 10, а 8 с 11) для управления мощными полевыми с предельно допустимым током 500 мА (не более 400 мА в длительном режиме).

Каково же внутренне устройство TL494CN? Схема ее показана на рисунке ниже.

Микросхема имеет встроенный источник опорного напряжения (ИОН) +5 В (№ 14). Он обычно используется в качестве эталонного напряжения (с точностью ± 1%), подаваемого на входы схем, потребляющих не более 10 мА, например, на вывод 13 выбора одно- или двухтактного режима работы микросхемы: при наличии на нем +5 В выбирается второй режим, при наличии на нем минуса напряжения питания - первый.

Для настройки частоты генератора пилообразного напряжения (ГПН) используют конденсатор и резистор, подключаемые к контактам 5 и 6 соответственно. И, конечно, микросхема имеет выводы для подключения плюса и минуса источника питания (номера 12 и 7 соответственно) в диапазоне от 7 до 42 В.

Из схемы видно, что имеется еще ряд внутренних устройств в TL494CN. Описание на русском языке их функционального назначения будет дано ниже по ходу изложения материала.

Функции выводов входных сигналов

Как и любое другое электронное устройство. рассматриваемая микросхема имеет свои входы и выходы. Мы начнем с первых. Выше уже было дан перечень этих выводов TL494CN. Описание на русском языке их функционального назначения будет далее приведено с подробными пояснениями.

Вывод 1

Это положительный (неинвертирующий) вход усилителя сигнала ошибки 1. Если напряжение на нем ниже, чем напряжение на выводе 2, выход усилителя ошибки 1 будет иметь низкий уровень. Если же оно будет выше, чем на контакте 2, сигнал усилителя ошибки 1 станет высоким. Выход усилителя по существу, повторяет положительный вход с использованием вывода 2 в качестве эталона. Функции усилителей ошибки будут более подробно описаны ниже.

Вывод 2

Это отрицательное (инвертирующий) вход усилителя сигнала ошибки 1. Если этот вывод выше, чем на выводе 1, выход усилителя ошибки 1 будет низким. Если же напряжение на этом выводе ниже, чем напряжение на выводе 1, выход усилителя будет высоким.

Вывод 15

Он работает точно так же, как и № 2. Зачастую второй усилитель ошибки не используется в TL494CN. Схема включения ее в этом случае содержит вывод 15 просто подключенный к 14-му (опорное напряжение +5 В).

Вывод 16

Он работает так же, как и № 1. Его обычно присоединяют к общему № 7, когда второй усилитель ошибки не используется. С выводом 15, подключенным к +5 В и № 16, подключенным к общему, выход второго усилителя низкий и поэтому не имеет никакого влияния на работу микросхемы.

Вывод 3

Этот контакт и каждый внутренний усилитель TL494CN связаны между собой через диоды. Если сигнал на выходе какого-либо из них меняется с низкого на высокий уровень, то на № 3 он также переходит в высокий. Когда сигнал на этом выводе превышает 3,3 В, выходные импульсы выключаются (нулевая скважность). Когда напряжение на нем близко к 0 В, длительность импульса максимальна. В промежутке между 0 и 3,3 В, длительность импульса составляет от 50% до 0% (для каждого из выходов ШИМ-контроллера - на выводах 9 и 10 в большинстве устройств).

Если необходимо, контакт 3 может быть использован в качестве входного сигнала или может быть использован для обеспечения демпфирования скорости изменения ширины импульсов. Если напряжение на нем высокое (> ~ 3,5 В), нет никакого способа для запуска ИБП на ШИМ-контроллере (импульсы от него будут отсутствовать).

Вывод 4

Он управляет диапазоном скважности выходных импульсов (англ. Dead-Time Control). Если напряжение на нем близко к 0 В, микросхема будет в состоянии выдавать как минимально возможную, так и максимальную ширину импульса (что задается другими входными сигналами). Если на этот вывод подается напряжение около 1,5 В, ширина выходного импульса будет ограничена до 50% от его максимальной ширины (или ~ 25% рабочего цикла для двухтактного режима ШИМ-контроллера). Если напряжение на нем высокое (> ~ 3,5 В), нет никакого способа для запуска ИБП на TL494CN. Схема включения ее зачастую содержит № 4, подключенный напрямую к земле.

  • Важно запомнить ! Сигнал на выводах 3 и 4 должен быть ниже ~ 3,3 В. А что будет, если он близок, например, к + 5 В? Как тогда поведет себя TL494CN? Схема преобразователя напряжения на ней не будет вырабатывать импульсы, т.е. не будет выходного напряжения от ИБП.

Вывод 5

Служит для присоединения времязадающего конденсатора Ct, причем второй его контакт присоединяется к земле. Значения емкости обычно от 0,01 μF до 0,1 μF. Изменения величины этого компонента ведут к изменению частоты ГПН и выходных импульсов ШИМ-контроллера. Как правило здесь используются конденсаторы высокого качества с очень низким температурным коэффициентом (с очень небольшим изменением емкости с изменением температуры).

Вывод 6

Для подключения врямязадающего резистора Rt, причем второй его контакт присоединяется к земле. Величины Rt и Ct определяют частоту ГПН.

  • f = 1,1: (Rt х Ct).

Вывод 7

Он присоединяется к общему проводу схемы устройства на ШИМ-контроллере.

Вывод 12

Он замаркирован литерами VCC. К нему присоединяется «плюс» источника питания TL494CN. Схема включения ее обычно содержит № 12, соединенный с коммутатором источника питания. Многие ИБП используют этот вывод, чтобы включать питание (и сам ИБП) и выключать его. Если на нем имеется +12 В и № 7 заземлен, ГПН и ИОН микросхемы будут работать.

Вывод 13

Это вход режима работы. Его функционирование было описано выше.

Функции выводов выходных сигналов

Выше они же были перечислены для TL494CN. Описание на русском языке их функционального назначения будет ниже приведено с подробными пояснениями.

Вывод 8

На этой микросхеме есть 2 npn-транзистора, которые являются ее выходными ключами. Этот вывод - коллектор транзистора 1, как правило, подключенный к источнику постоянного напряжения (12 В). Тем не менее в схемах некоторых устройств он используется в качестве выхода, и можно увидеть на нем меандр (как и на № 11).

Вывод 9

Это эмиттер транзистора 1. Он управляет мощным транзистором ИБП (полевым в большинстве случаев) в двухтактной схеме либо напрямую, либо через промежуточный транзистор.

Вывод 10

Это эмиттер транзистора 2. В однотактном режиме работы сигнал на нем такой же, как и на № 9. В двухтактном режиме сигналы на №№ 9 и 10 противофазны, т. е. когда на одном высокий уровень сигнала, то на другом он низкий, и наоборот. В большинстве устройств сигналы с эмиттеров выходных транзисторных ключей рассматриваемой микросхемы управляют мощными полевыми транзисторами, приводимыми в состояние ВКЛЮЧЕНО, когда напряжение на выводах 9 и 10 высокое (выше ~ 3,5 В, но он никак не относится к уровню 3,3 В на №№ 3 и 4).

Вывод 11

Это коллектор транзистора 2, как правило, подключенный к источнику постоянного напряжения (+12 В).

  • Примечание : В устройствах на TL494CN схема включения ее может содержать в качестве выходов ШИМ-контроллера как коллекторы, таки эмиттеры транзисторов 1 и 2, хотя второй вариант встречается чаще. Есть, однако, варианты, когда именно контакты 8 и 11 являются выходами. Если вы найдете небольшой трансформатор в цепи между микросхемой и полевыми транзисторами, выходной сигнал, скорее всего, берется именно с них (с коллекторов).

Вывод 14

Это выход ИОН, также описанный выше.

Принцип работы

Как же работает микросхема TL494CN? Описание порядка ее работы дадим по материалам Motorola, Inc. Выход импульсов с широтной модуляцией достигается путем сравнения положительного пилообразного сигнала с конденсатора Ct с любым из двух управляющих сигналов. Логические схемы ИЛИ-НЕ управления выходными транзисторами Q1 и Q2, открывают их только тогда, когда сигнал на тактовом входе (С1) триггера (см. функциональную схему TL494CN) переходит в низкий уровень.

Таким образом, если на входе С1 триггера уровень логической единицы, то выходные транзисторы закрыты в обоих режимах работы: однотактном и двухтактном. Если на этом входе присутствует сигнал то в двухтактном режиме транзисторные ключи открываются поочердно по приходу среза тактового импульса на триггер. В однотактном режиме триггер не используется, и оба выходных ключа открываются синхронно.

Это открытое состояние (в обоих режимах) возможно только в той части периода ГПН, когда пилообразное напряжение больше, чем управляющие сигналы. Таким образом, увеличение или уменьшение величины управляющего сигнала вызывает соответственно линейное увеличение или уменьшение ширины импульсов напряжения на выходах микросхемы.

В качестве управляющих сигналов может быть использовано напряжение с вывода 4 (управление «мертвым временем»), входы усилителей ошибки или вход сигнала обратной связи с вывода 3.

Первые шаги по работе с микросхемой

Прежде чем делать какое-либо полезное устройство, рекомендуется изучить, как работает TL494CN. Как проверить ее работоспособность?

Возьмите свою макетную плату, установите на нее микросхему и подключите провода согласно нижеприведенной схеме.

Если все подключено правильно, то схема будет работать. Оставьте выводы 3 и 4 не свободными. Используйте свой осциллограф, чтобы проверить работу ГПН - на выводе 6 вы должны увидеть пилообразное напряжение. Выходы будут нулевыми. Как же определить их работоспособность в TL494CN. Проверка ее может быть выполнена следующим образом:

  1. Подключите выход обратной связи (№ 3) и выход управления «мертвым временем» (№ 4) к общему выводу (№ 7).
  2. Теперь вы должны обнаружить прямоугольные импульсы на выходах микросхемы.

Как усилить выходной сигнал?

Выход TL494CN является довольно слаботочным, а вы, конечно же, хотите большей мощности. Таким образом, мы должны добавить несколько мощных транзисторов. Наиболее просто использовать (и очень легко получить - из старой материнской платы компьютера) n-канальные силовые МОП-транзисторы. Мы должны при этом проинвертировать выход TL494CN, т. к. если мы подключим n-канальный МОП-транзистор к нему, то при отсутствии импульса на выходе микросхемы он будет открытым для протекания постоянного тока. При может попросту сгореть… Так что достаем универсальный npn-транзистор и подключаем согласно нижеприведенной схеме.

Мощный МОП-транзистор в этой схеме управляется в пассивном режиме. Это не очень хорошо, но для целей тестирования и малой мощности вполне подходит. R1 в схеме является нагрузкой npn-транзистора. Выберите его в соответствии с максимально допустимым током его коллектора. R2 представляет собой нагрузку нашего силового каскада. В следующих экспериментах он будет заменен трансформатором.

Если мы теперь посмотрим осциллографом сигнал на выводе 6 микросхемы, то увидите «пилу». На № 8 (К1) можно по-прежнему видеть прямоугольные импульсы, а на стоке МОП-транзистора такие же по форме импульсы, но большей величины.

А как поднять напряжение на выходе?

Теперь давайте получим некоторое напряжение повыше при помощи TL494CN. Схема включения и разводки используется та же самая - на макетной плате. Конечно, достаточно высокого напряжения на ней не получить, тем более что нет какого-либо радиатора на силовых МОП-транзисторах. И все же, подключите небольшой трансформатор к выходному каскаду, согласно этой схеме.

Первичная обмотка трансформатора содержит 10 витков. Вторичная обмотка содержит около 100 витков. Таким образом, коэффициент трансформации равен 10. Если подать 10В в первичную обмотку, вы должны получить около 100 В на выходе. Сердечник выполнен из феррита. Можно использовать некоторый среднего размера сердечник от трансформатора блока питания ПК.

Будьте осторожны, выход трансформатора под высоким напряжением. Ток очень низкий и не убьет вас. Но можно получить хороший удар. Еще одна опасность - если вы установите большой конденсатор на выходе, он будет накапливать большой заряд. Поэтому после выключения схемы, его следует разрядить.

На выходе схемы можно включить любой индикатор вроде лампочки, как на фото ниже.

Она работает от напряжения постоянного тока, и ей необходимо около 160 В, чтобы засветиться. (Питание всего устройства составляет около 15 В - на порядок ниже.)

Схема с трансформаторным выходом широко применяется в любых ИБП, включая и блоки питания ПК. В этих устройствах, первый трансформатор, подключенный через транзисторные ключи к выходам ШИМ-контроллера, служит для низковольтной части схемы, включающей TL494CN, от ее высоковольтной части, содержащей трансформатор сетевого напряжения.

Регулятор напряжения

Как правило, в самодельных небольших электронных устройствах питание обеспечивает типовой ИБП ПК, выполненный на TL494CN. Схема включения БП ПК общеизвестна, а сами блоки легкодоступны, поскольку миллионы старых ПК ежегодно утилизируются или продаются на запчасти. Но как правило, эти ИБП вырабатывают напряжения не выше 12 В. Этого слишком мало для частотно-регулируемого привода. Конечно, можно было бы постараться и использовать ИБП ПК повышенного напряжения для 25 В, но его будет трудно найти, и слишком много мощности будет рассеиваться на напряжении 5 В в логических элементах.

Однако на TL494 (или аналогах) можно построить любые схемы с выходом на повышенную мощность и напряжение. Используя типичные детали из ИБП ПК и мощные МОП-транзисторы от материнской платы, можно построить ШИМ-регулятор напряжения на TL494CN. Схема преобразователя представлена на рисунке ниже.

На ней можно увидеть схему включения микросхемы и выходной каскад на двух транзисторах: универсальном npn- и мощном МОП.

Основные части: T1, Q1, L1, D1. Биполярный T1 используется для управления мощным МОП-транзистором, подключенным упрощенным способом, так наз. «пассивным». L1 является дросселем индуктивности от старого принтера HP (около 50 витков, 1 см высота, ширина 0,5 см с обмотками, открытый дроссель). D1 - это от другого устройства. TL494 подключена альтернативным способом по отношению к вышеописанному, хотя можно использовать любой из них.

С8 - конденсатор малой емкости, чтобы предотвратить воздействие шумов, поступающих на вход усилителя ошибки, величина 0,01uF будет более или менее нормальной. Большие значения будут замедлять установку требуемого напряжения.

С6 - еще меньший конденсатор, он используется для фильтрации высокочастотных помех. Его емкость - до нескольких сотен пикофарад.

Каждому радиолюбителю, ремонтнику или просто мастеру необходим источник питания, чтобы питать свои схемы, тестировать их при помощи блока питания, либо же просто иногда необходимо зарядить аккумулятор. Случилось так, что и я увлекся этой темой некоторое время назад и мне так же стал необходим подобный девайс. Как обычно, по этому вопросу было перелопачено много страниц в интернете, следил за многими темами на форумах, но точно того, что было нужно мне в моем представлении не было нигде - тогда было решено все сделать самому, собрав всю необходимую информацию по частям. Таким образом родился на свет импульсный лабораторный блок питания на микросхеме TL494.

Что особенного – да вроде мало чего, но я поясню – переделывать родной блок питания компьютера все на той же печатной плате мне кажется не совсем по фен-шую, да и не красиво. С корпусом та же история – дырявая железяка просто не смотрится, хотя если есть фанаты такого стиля, ничего против не имею. Поэтому в основе данной конструкции лежат лишь основные детали от родного компьютерного блока питания, а вот печатная плата (точнее печатные платы – их на самом деле три) сделана уже отдельно и специально под корпус. Корпус здесь состоит также из двух частей – само собой основа корпус Kradex Z4A, а так же вентилятор (кулер), который вы можете видеть на фото. Он является как бы продолжением корпуса, но обо всем по порядку.

Схема блока питания:

Список деталей вы можете увидеть в конце статьи. А теперь коротко разберем схему импульсного лабораторного блока питания. Схема работает на микросхеме TL494, существует много аналогов, однако рекомендую все же использовать оригинальные микросхемы, стоят они совсем недорого, а работают надежно в отличие от китайских аналогов и подделок. Можно также разобрать несколько старых блоков питания от компьютеров и насобирать необходимых деталей от туда, но я рекомендую по возможности использовать все же новые детали и микросхемы – это повысит шанс на успех, так сказать. По причине того, что выходная мощность встроенных ключевых элементов TL494 не достаточная, чтобы управлять мощными транзисторами, работающих на основной импульсный трансформатор Tr2, строится схема управления силовыми транзисторами T3 и T4 с применением управляющего трансформатора Tr1. Данный трансформатор управления использован от старого блока питания компьютера без внесения изменений в состав обмоток. Трансформатор управления Tr1 раскачивается транзисторами T1 и T2.

Сигналы управляющего трансформатора через диоды D8 и D9 поступают на базы силовых транзисторов. Транзисторы T3 и T4 используются биполярные марки MJE13009, можно использовать транзисторы на меньший ток – MJE13007, но здесь все же лучше оставить на больший ток, чтобы повысить надежность и мощность схемы, хотя от короткого замыкания в высоковольтных цепях схемы это не спасет. Далее эти транзисторы раскачивают трансформатор Tr2, который преобразует выпрямленное напряжение 310 вольт от диодного моста VDS1 в необходимое нам (в данном случае 30 – 31 вольт). Данные по перемотке (или намотке с нуля) трансформатора чуть позже. Выходное напряжение снимается с вторичных обмоток этого трансформатора, к которым подключается выпрямитель и ряд фильтров, чтобы напряжение было максимально без пульсаций. Выпрямитель необходимо использовать на диодах Шоттки, чтобы минимизировать потери при выпрямлении и исключить большой нагрев этого элемента, по схеме используется сдвоенный диод Шоттки D15. Здесь также чем больше допустимый ток диодов, тем лучше. При неосторожности при первых запусках схемы большая вероятность испортить эти диоды и силовые транзисторы T3 и T4. В выходных фильтрах схемы стоит использовать электролитические конденсаторы с низким ЭПС (Low ESR). Дроссели L5 и L6 были использованы от старых блоков питания компьютеров (хотя как старых – просто неисправных, но достаточно новых и мощных, кажется 550 Вт). L6 использован без изменения обмотки, представляет собой цилиндр с десятком или около того витков толстого медного провода. L5 необходимо перемотать, так как в компьютере используется несколько уровней напряжения – нам нужно только одно напряжение, которое мы будем регулировать.

L5 представляет собой кольцо желтого цвета (не всякое кольцо пойдет, так как могут применяться ферриты с разными характеристиками, нам нужно именно желтого цвета). На это кольцо нужно намотать примерно 50 витков медного провода диаметром 1,5 мм. Резистор R34 гасящий – он разряжает конденсаторы, чтобы при регулировке не возникло ситуации долгого ожидания уменьшения напряжения при повороте ручки регулировки.

Наиболее подверженные нагреву элементы T3 и T4, а также D15 устанавливаются на радиаторы. В данной конструкции они были также взяты от старых блоков и отформатированы (отрезаны и изогнуты под размеры корпуса и печатной платы).

Схема является импульсной и может вносить в бытовую сеть собственные помехи, поэтому необходимо использовать синфазный дроссель L2. Чтобы отфильтровывать уже имеющиеся помехи сети используются фильтры с применением дросселей L3 и L4. Терморезистор NTC1 исключит скачок тока в момент включения схемы в розетку, старт схемы получится более мягкий.

Чтобы управлять напряжением и током, а также для работы микросхемы TL494 необходимо напряжение более низкого уровня, чем 310 вольт, поэтому используется отдельная схема питания для этого. Построена она на малогабаритном трансформаторе Tr3 BV EI 382 1189. С вторичной обмотки напряжение выпрямляется и сглаживается конденсатором – просто и сердито. Таким образом, получаем 12 вольт, необходимые для управляющей части схемы блока питания. Далее 12 вольт стабилизируются до 5 вольт при помощи микросхемы линейного стабилизатора 7805 – это напряжение используется для схемы индикации напряжения и тока. Также искусственно создается напряжение -5 вольт для питания операционного усилителя схемы индикации напряжения и тока. В принципе можно использовать любую доступную схему вольтметра и амперметра для данного блока питания и при отсутствии необходимости данный каскад стабилизации напряжения можно исключить. Как правило, используются схемы измерения и индикации, построенные на микроконтроллерах, которым необходимо питания порядка 3,3 – 5 вольта. Подключение амперметра и вольтметра указано на схеме.

На фото печатная плата с микроконтроллером - амперметр и вольтметр, к панели прикреплены на болтики, которые ввинчиваются в гайки, надежно приклеенные к пластмассе супер клеем. Данный индикатор имеет ограничение по измерению тока до 9,99 А, что явно маловато для данного блока питания. Кроме как функций индикации модуль измерения тока и напряжения больше никак не задействован относительно основной платы устройства. Функционально подойдет любой измерительный модуль на замену.

Схема регулировки напряжения и тока построена на четырех операционных усилителях (используется LM324 – четыре операционных усилителя в одном корпусе). Для питания этой микросхемы стоит использовать фильтр по питания на элементах L1 и C1, C2. Настройка схемы заключается в подборе элементов, помеченных звездочкой для задания диапазонов регулирования. Схема регулировки собрана на отдельной печатной плате. Кроме того, для более плавной регулировки по току можно использовать несколько переменных резисторов соединенных соответствующим образом.

Для задания частоты преобразователя необходимо подобрать номинал конденсатора C3 и номинал резистора R3. На схеме указана небольшая табличка с расчетными данными. Слишком большая частота может увеличить потери на силовых транзисторах при переключении, поэтому слишком увлекаться не стоит, оптимально, на мой взгляд, использовать частоту 70-80 кГц, а то и меньше.

Теперь о параметрах намотки или перемотки трансформатора Tr2. Основу я также использовал от старых блоков питания компьютера. Если большой ток и большое напряжения вам не нужны, то можно такой трансформатор не перематывать, а использовать готовый, соединив обмотки соответствующим образом. Однако если необходим больший ток и напряжение, то трансформатор необходимо перемотать, чтобы получить более лучший результат. Прежде всего придется разобрать сердечник, который у нас имеется. Это самый ответственный момент, так как ферриты достаточно хрупкие, а ломать их не стоит, иначе все на мусор. Итак, чтобы разобрать сердечник, его необходимо нагреть, так как для склеивания половинок обычно изготовитель использует эпоксидную смолу, которая при нагреве размягчается. Открытые источники огня использовать не стоит. Хорошо подойдет электронагревательное оборудование, в бытовых условиях – это, например электроплита. При нагреве аккуратно разъединяем половинки сердечника. После остывания снимаем все родные обмотки. Теперь нужно рассчитать необходимое количество витков первичной и вторичной обмоток трансформатора. Для этого можно использовать программу ExcellentIT(5000), в которой задаем необходимые нам параметры преобразователя и получаем расчет количества витков относительно используемого сердечника. Далее после намотки сердечник трансформатор необходимо обратно склеить, желательно также использовать высокопрочный клей или эпоксидную смолу. При покупке нового сердечника потребность в склейке может отсутствовать, так как часто половинки сердечника могут стягиваться металлическими скобами и болтиками. Обмотки необходимо наматывать плотно, чтобы исключить акустический шум при работе устройства. По желанию обмотки можно заливать какими-нибудь парафинами.

Печатные платы проектировались для корпуса Z4A. Сам корпус подвергается небольшим доработкам, чтобы обеспечить циркуляцию воздуха для охлаждения. Для этого по бокам и сзади сверлится несколько отверстий, а сверху прорезаем отверстие для вентилятора. Вентилятор дует вниз, лишний воздух уходит через отверстия. Можно вентилятор расположить и наоборот, чтоы он высасывал воздух из корпуса. По факту охлаждение вентилятором редко когда понадобится, к тому же даже при больших нагрузках элементы схемы сильно не греются.

Также подготавливаются лицевые панели. Индикаторы напряжения и тока используются с применением семисегментных индикаторов, а в качестве светофильтра для этих индикаторов используется металлизированная антистатическая пленка, наподобие той, в которую упаковывают радиоэлементы с пометкой чувствительности к электростатике. Можно также использовать полупрозрачную пленку, которую клеят на оконные стекла, либо тонирующую пленку для автомобилей. Набор элементов на лицевой панели спереди и сзади можно компоновать по любому вкусу. В моем случае сзади разъем для подключения к розетке, отсек предохранителя и выключатель. Спереди – индикаторы тока и напряжения, светодиоды индикации стабилизации тока (красный) и стабилизации напряжения (зеленый), ручки переменных резисторов для регулировки тока и напряжения и быстрозажимной разъем, к которому подключено выходное напряжение.

При правильной сборке блок питания нуждается только в подстройке диапазонов регулирования.

Защита по току (стабилизация по току) работает следующим образом: при превышении установленного тока на микросхему TL494 подается сигнал о снижении напряжения – чем меньше напряжение, тем меньше ток. При этом на лицевой панели загорается красный светодиод, сигнализирующий о превышении установленного тока, либо о коротком замыкании. В нормальном режиме стабилизации напряжения горит зеленый светодиод.

Основные характеристики импульсного лабораторного блока питания зависят в основном от применяемой элементной базы, в данном варианте характеристики следующие:

  • Входное напряжение – 220 вольт переменного тока
  • Выходное напряжение – от 0 до 30 вольт постоянного тока
  • Выходной ток составляет более 15 А (фактически тестированное значение)
  • Режим стабилизации напряжения
  • Режим стабилизации тока (защита от короткого замыкания)
  • Индикация обоих режимов светодиодами
  • Малые габариты и вес при большой мощности
  • Регулировка ограничения тока и напряжения

Подводя итог, можно отметить, что лабораторный блок питания получился достаточно качественный и мощный. Это позволяет использовать данный вариант блока питания как для тестирования каких-то своих схем, так и вплоть до зарядки автомобильных аккумуляторов. Стоит отметить также то, что емкости на выходе стоят достаточно большие, поэтому коротких замыканий лучше не допускать, так как разряд конденсаторов с большой вероятностью может вывести схему из строя (ту, к которой подключаемся), однако без этой емкости выходное напряжение будет хуже – возрастут пульсации. Это особенность именно импульсного блока, в аналоговых блока питания выходная емкость не превышает 10 мкФ как правило в силу своей схемотехники. Таким образом, получаем универсальный лабораторный импульсный блок питания способный работать в широком диапазоне нагрузок практически от нуля до десятков ампер и вольт. Блок питания прекрасно зарекомендовал себя как при питании небольших схем при тестировании (но тут защита от КЗ поможет мало из-за большой выходной емкости) с потреблением в миллиамперы, так и в применении в ситуациях, кода необходима большая выходная мощность за время моего скудного опыта в области электроники.

Этот лабораторный блок питания я сделал около 4 лет назад, когда только начинал делать первые шаги в электронике. До настоящего времени ни одной поломку с учетом того, что работал часто далеко за пределами 10 ампер (зарядка автомобильных аккумуляторов). При описании за счет давнего срока изготовления мог что-то упустить, вопросы, замечания складывайте в комментариях.

По для расчета трансформатора:

Прилагаю к статье печатные платы (вольтметр и амперметр сюда не входят - можно применять абсолютно любые).

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
IC1 ШИМ контроллер

TL494

1 В блокнот
IC2 Операционный усилитель

LM324

1 В блокнот
VR1 Линейный регулятор

L7805AB

1 В блокнот
VR2 Линейный регулятор

LM7905

1 В блокнот
T1, T2 Биполярный транзистор

C945

2 В блокнот
T3, T4 Биполярный транзистор

MJE13009

2 В блокнот
VDS2 Диодный мост MB105 1 В блокнот
VDS1 Диодный мост GBU1506 1 В блокнот
D3-D5, D8, D9 Выпрямительный диод

1N4148

5 В блокнот
D6, D7 Выпрямительный диод

FR107

2 В блокнот
D10, D11 Выпрямительный диод

FR207

2 В блокнот
D12, D13 Выпрямительный диод

FR104

2 В блокнот
D15 Диод Шоттки F20C20 1 В блокнот
L1 Дроссель 100 мкГн 1 В блокнот
L2 Синфазный дроссель 29 мГн 1 В блокнот
L3, L4 Дроссель 10 мкГн 2 В блокнот
L5 Дроссель 100 мкГн 1 на желтом кольце В блокнот
L6 Дроссель 8 мкГн 1 В блокнот
Tr1 Импульсный трансформатор EE16 1 В блокнот
Tr2 Импульсный трансформатор EE28 - EE33 1 ER35 В блокнот
Tr3 Трансформатор BV EI 382 1189 1 В блокнот
F1 Предохранитель 5 А 1 В блокнот
NTC1 Терморезистор 5.1 Ом 1 В блокнот
VDR1 Варистор 250 В 1 В блокнот
R1, R9, R12, R14 Резистор

2.2 кОм

4 В блокнот
R2, R4, R5, R15, R16, R21 Резистор

4.7 кОм

6 В блокнот
R3 Резистор

5.6 кОм

1 подбирать исходя из необходимой частоты В блокнот
R6, R7 Резистор

510 кОм

2 В блокнот
R8 Резистор

1 МОм

1 В блокнот
R13 Резистор

1.5 кОм

1 В блокнот
R17, R24 Резистор

22 кОм

2 В блокнот
R18 Резистор

1 кОм

1 В блокнот
R19, R20 Резистор

22 Ом

2 В блокнот
R22, R23 Резистор

1.8 кОм

2 В блокнот
R27, R28 Резистор

2.2 Ом

2 В блокнот
R29, R30 Резистор

470 кОм

2 1-2 Вт В блокнот
R31 Резистор

100 Ом

1 1-2 Вт В блокнот
R32, R33 Резистор

15 Ом

2 В блокнот
R34 Резистор

1 кОм

1 1-2 Вт В блокнот
R10, R11 Переменный резистор 10 кОм 2 можно 3 или 4 использовать В блокнот
R25, R26 Резистор

0.1 Ом

2 шунты, мощность зависит от выходной мощности БП В блокнот
C1, C8, C27, C28, C30, C31 Конденсатор 0.1 мкФ 7 В блокнот
C2, C9, C22, C25, C26, C34, C35 Электролитический конденсатор 47 мкФ 7 В блокнот
C3 Конденсатор 1 нФ 1 пленочный

Этот проект является одним из самых долгих, который делал. Заказал блок питания один человек для усилителя мощности.
Ранее никогда не довелось делать такие мощные импульсники стабилизированного типа, хотя опыт в сборке ИИП довольно большой. Проблем во время сборки было много. Изначально хочу сказать, что схема часто встречается в сети, а если точнее, то на сайте интервалка, но.... схема изначально не идеальна, с ошибками и скорее всего ничего не заработает, если собрать точно по схеме с сайта.


В частности изменил схему подключения генератора, взял схему с даташита. Переделал узел питания управляющей цепи, вместо параллельно соединенных 2-х ваттных резисторов, задействовал отдельный ИИП 15 Вольт 2 Ампер, что дало возможность избавиться от многих хлопот.
Заменил некоторые компоненты под свои удобства и все запустил по частям, настроив каждый узел отдельно.
Несколько слов о конструкции блока питания. Это мощный импульсный сетевой блок питания по мостовой топологии, имеет стабилизацию выходного напряжения, защиту от кз и перегруза, все эти функции подлежат регулировке.
Мощность в моем случае 2000 ватт, но схема без проблем позволит снять до 4000 ватт, если заменить ключи, мост и напичкать электролитов на 4000 мкФ. На счет электролитов - емкость подбирается исходя из расчета 1 ватт - 1мкФ.
Диодный мост - 30 Ампер 1000 Вольт - готовая сборка, имеет свой отдельный обдув (кулер)
Сетевой предохранитель 25-30 Ампер.
Транзисторы - IRFP460 , старайтесь подобрать транзисторы с напряжением 450-700 Вольт, с наименьшей емкостью затвора и с наименьшим сопротивлением открытого канала ключа. В моем случае эти ключи были единственным вариантом, хотя в мостовой схеме обеспечить заданную мощность они могут. Устанавливаются на общий теплоотвод, обязательно нужно изолировать их друг от друга, теплоотвод нуждается в интенсивном охлаждении.
Реле режима плавного пуска - 30 Ампер с катушкой 12 Вольт. Изначально, когда блок подключается в сеть 220 Вольт пусковой ток на столь велик, что может спалить мост и еще много чего, поэтому режим плавного пуска для блоков питания такого ранга необходим. При подключении в сеть через ограничительный резистор (цепочка последовательно соединенных резисторов 3х22Ом 5 Ватт в моем случае) заряжаются электролиты. Когда напряжение на них достаточно велико, срабатывает блок питания управляющей цепи (15 Вольт 2 Ампер), который и замыкает реле и через последний подается основное (силовое) питание на схему.
Трансформатор - в моем случае на 4-х кольцах 45х28х8 2000НМ, сердечник не критичен и все, что с ним связано придется рассчитать по специализированным программам, тоже самое с выходными дросселями групповой стабилизации.

Мой блок имеет 3 обмотки, все они обеспечивают двухполярное напряжение. Первая (основная, силовая) обмотка на +/-45 Вольт с током 20 Ампер - для запитки основных выходных каскадов (усилителя по току) УМЗЧ, вторая +/-55 вольт 1,5Ампер - для запитки дифф каскадов усилителя, третья +/-15 для запитки блока фильтров.

Генератор построен на TL494 , настроен на частоту 80 кГц, дальше драйвера IR2110 для управления ключей.
Трансформатор тока намотан на кольце 2000НМ 20х12х6 - вторичная обмотка намотана проводом МГТФ 0,3мм и состоит из 2х45витковв.
В выходной части все стандартно, в качестве выпрямителя для основной силовой обмотки задействован мост из диодов KD2997 - с током 30 ампер. Мостом для обмотки 55 вольт стоят диоды UF5408, а для маломощной обмотки 15 Вольт - UF4007. Использовать только быстрые или ультрабыстрые диоды, хотя и можно обычные импульсные диоды с обратным напряжением не менее 150-200 Вольт (напряжение и ток диодов зависит от параметров обмотки).
Конденсаторы после выпрямителя стоят на 100 Вольт (с запасом), емкость 1000мкФ, но разумеется на самой плате усилителей будут еще.

Устранение неполадок начальной схемы.
Приводить свою схему не буду, поскольку она мало чем отличается от указанной. Скажу только, что в схеме 15 вывод ТЛ отцепляем от 16 и припаиваем к 13/14 выводам. Дальше убираем резисторы R16/19/20/22 2 ватт, и питаем узел управления отдельным блоком питания 16-18 Вольт 1-2 ампер.
Резистор R29 заменяем на 6,8-10кОм. Исключаем из схемы кнопки SA3/SA4 (ни в коем случае не замкнуть их! будет бум!). R8/R9 заменяем - при первом же подключении они выгорят, поэтому заменяем на резистор 5 ватт 47-68Ом, можно использовать несколько последовательно соединенных резисторов с указанной мощностью.
R42 - заменяем на стабилитрон с нужным напряжением стабилизации. Все переменные резисторы в схеме очень советую использовать многооборотного типа, для наиболее точной настройки.
Минимальная грань стабилизации напряжения 18-25 Вольт, дальше уже пойдет срыв генерации.

Просмотров